基于CT影像组学预测肺癌患者化疗早期疗效的应用研究

目的 探讨基于治疗前CT影像组学模型预测肺癌患者化疗早期疗效的效能。方法 回顾性搜集2017年1月至2022年1月202例确诊肺癌患者的临床影像资料,通过对比化疗半年后的CT图像与化疗前CT图像,根据实体肿瘤疗效评价标准(RECIST 1.1)分为部分缓解(PR)组100例和疾病C59 IC50进展(PD)组102例,将入组患者的胸部CT平扫DICOM文件导入开源图像分割软件ITK-SNAP软件,macrophage infection进行感兴趣区(ROI)的勾画,再进行影像学特征提取,按照7∶3的比例随机分配为训练组和验证组,采用LASSO法进行降维及构建影像组学模型,最终根据受试者工作特征曲线(ROC)的曲线下面积(AUC)、敏感度、特异度来评价模型的AZD1152-HQPA分子量预测效能。结果 训练组的AUC值、特异度、敏感度分别为0.737(95%CI:0.656~0.819)、0.71、0.67;验证组的AUC值、特异度、敏感度分别为0.722(95%CI:0.594~0.851)、0.77、0.53,模型达到了良好的预测效能。结论 基于治疗前CT的影像组学模型可在化疗前对肺癌的早期疗效做出较准确预测。